In this blog you will enjoy with science

Monday, 12 June 2017

स्ट्रींग सिद्धांत(String Theory) भाग 04 : क्वांटम भौतिकी और साधारणा सापेक्षतावाद

क्वांटम भौतिकी और साधारण सापेक्षतावाद दोनो आधुनिक भौतिकी के आधार स्तम्भ है। क्वांटम सिद्धांत जहाँ परमाणु और परमाणु से छोटे कणों से संबंधित है वहीं सापेक्षतावाद खगोलीय पिंडों के लिए है। सापेक्षतावाद के अनुसार अंतराल लचीला होता है जिसमे भारी पिंड वक्रता उत्पन्न कर सकते है, वहीं क्वांटम सिद्धांत मे अंतराल की व्याख्या करने के लिए एकाधिक मत है। क्वांटम भौतिकी मे अनिश्चितता और संभावना का प्रभाव रहता है, वहीं सापेक्षतावाद मे हर घटना निश्चित होती है। इतने सारे विरोधाभासों के बाद भी दोनो सिद्धांतों के पूर्वानुमान सटीक रहते है। वर्तमान मे इन दोनो सिद्धांतों पर आधारित उपकरणों पर संपूर्ण विश्व निर्भर करता है।
इसका अर्थ यह है कि क्वांटम भौतिकी और साधारण सापेक्षतावाद दोनो दो अलग अलग परिस्थितियों  मे कार्य करने वाले सिद्धांत है। दोनो का सह अस्तित्व संभव है। लेकिन क्या यह संभव है ?
क्वांटम भौतिकी और साधारण सापेक्षतावाद
क्वांटम भौतिकी और साधारण सापेक्षतावाद
जब साधारण सापेक्षतावाद का सिद्धांत प्रस्तावित किया गया था तब उसके समीकरणों ने एक ऐसे क्षेत्र की कल्पना की थी जिसमे एक अत्यंत लघु क्षेत्र मे अनंत द्रव्यमान संघनित हो सकता है। इस क्षेत्र के गुरुत्वाकर्षण से किसी का भी बच निकलना असंभव होगा। उस समय यह माना गया था कि ऐसा क्षेत्र केवल गणितीय या सैधांतिक रूप मे ही संभव है, वास्तविक विश्व मे ऐसा क्षेत्र नही हो सकता है। इस क्षेत्र को श्याम वीवर(Black Hole) नाम दिया गया।
आज हम जानते है कि श्याम वीवर संभव है और हमारे पास उनकी उपस्थिति के प्रमाण है। विडंबना यह है कि जिस साधारण सापेक्षतावाद के समीकरणों ने श्याम वीवर के अस्तित्व की संभावना जतायी थी, उसी सिद्धांत के समीकरण श्याम वीवर की व्याख्या नही कर पाते है। श्याम वीवर का आकार सैधांतिक रूप से शून्य होना चाहिये और इसका द्रव्यमान अत्यधिक (न्यूनतम सूर्य के द्रव्यमान से तीन गुणा ) होना चाहिये। लेकिन शून्य क्षेत्रफल का पिंड होना सामान्य बुद्धि के विपरीत है। इसे सिंगुलरेटी (Singularity) भी कहते है।
यदि सापेक्षतावाद के समीकरणो मे श्याम वीवर के जैसी स्थिति के लिए मूल्य रखे जायें तो परिणाम मे ∞(अनंत – infinity) आना शुरू हो जाता है। गणितीय रूप से किसी समीकरण का उत्तर  ∞ आना सही हो सकता है लेकिन वास्तविक भौतिक विश्व मे  ∞  का कोई अर्थ नही होता है। हम यह कह सकते है कि साधारण सापेक्षतावाद इस समस्या को हल नही कर सकता क्योंकि यह परमाणु से भी छोटे आकार मे हो रहा है। परमाणु से छोटे आकार के लिए क्वांटम भौतिकी का प्रयोग होना चाहिये!
लेकिन क्वांटम भौतिकी  गुरुत्वाकर्षण का समावेश नही करता है। साधारणतः क्वांटम आकार मे गुरुत्वाकर्षण प्रभाव नगण्य होता है। यह बल इतना कमजोर होता है कि क्वांटम गणना मे इसकी उपेक्षा करने से गणना पर कोई अंतर नही आता है। परंतु श्याम वीवर मे स्थिति भिन्न होती है, इसका गुरुत्वाकर्षण अत्यधिक होता है, जिससे बचकर प्रकाश भी नही जा सकता है। इसके गुरुत्वाकर्षण की उपेक्षा नही की  जा सकती है।
अर्थात श्याम वीवर को समझने के लिए हम एक ऐसा सिद्धांत चाहिये जो क्वांटम भौतिकी और साधारण सापेक्षतावाद को एक कर सके!
साधारण सापेक्षतावाद और क्वांटम भौतिकी मे अन्य अंतर
आकार और पैमाना
कार्य क्षेत्र - साधारण सापेक्षतावाद : ग्रह/तारे/आकाशगंगा और परमाण्विक कण : क्वांटम भौतिकी
कार्य क्षेत्र – साधारण सापेक्षतावाद : ग्रह/तारे/आकाशगंगा और परमाण्विक कण : क्वांटम भौतिकी
क्वांटम सिद्धांत लघुतम कणो से संबंधित है, वह परमाणु और उससे छोटे कण जैसे इलेक्ट्रान, क्वार्क के व्यवहार की व्याख्या करता है। साधारण सापेक्षतावाद बड़े आकार मे कार्य करता है, वह ग्रह, तारे और आकाशगंगा के व्यवहार की व्याख्या करता है।
अंतराल की संरचना
काल-अंतराल : साधारण सापेक्षतावाद और क्वांटम भौतिकी मे
काल-अंतराल : साधारण सापेक्षतावाद और क्वांटम भौतिकी मे
सापेक्षतावाद के अनुसार अंतराल (काल अंतराल) मे पदार्थ के द्वारा वक्रता आती है। यह काल अंतराल कपड़े की एक विशालकाय शांत चादर की तरह होता है। क्वांटम सिद्धांत मे अंतराल स्पष्ट नही है, इसमे छोटी छोटी तरंगे उठती रहती है। क्वांटम सिद्धांत के अनुसार अंतराल एक फ़ोम के जैसे है, जिसमे बुलबुलो की तरह कण बनते और विलुप्त होते रहते हैं।
क्वांटम अनिश्चितता
सापेक्षतावाद के अनुसार भविष्य सैद्धांतिक रूप से पूर्वानुमेय अथवा निश्चयात्मक है। आप किसी ग्रह या तारे की किसी विशेष समय पर गति और स्थिति के बारे मे अचूक गणना कर सकते है। क्वांटम सिद्धांत मे अनिश्चितता एक अनिवार्य भाग है। यह अनिश्चितता किसी उपकरण की शुद्धता या मानवीय गलती पर निर्भर नही है, यह वास्तविकता का अन्तर्निहित गुणधर्म है। क्वांटम भौतिकी मे आप किसी विशेष समय पर किसी कण की गति या स्थिति मे से कोई एक की ही गणना कर सकते है। आप दोनो को एक साथ नही जान सकते क्योंकि इनमे से किसी एक की अचूक जानकारी होने पर दूसरा उतना ही अनिश्चित हो जाता है। यह कुछ ऐसा है कि आप कार से यात्रा कर रहे है और अपनी कार की गति जानते है लेकिन आप नही जान सकते कि आप कहां पर है!
विचित्र क्वांटम गुणधर्म
तीन रंग के क्वार्को से बना प्रोटान
तीन रंग के क्वार्को से बना प्रोटान
क्वांटम सिद्धांत के अनुसार मूलभूत कणो के कुछ विचित्र गुण जैसे “रंग” तथा “स्पिन” होते है। रंग और स्पिन को समझने के लिए इस लेख को पढ़ें। ये परिचित शब्द होने के बावजूद, क्वांटम सिद्धांत से संबंधित इन शब्दों का रोज़मर्रा के जीवन मे कोई उदाहरण नही है, इन्हे रोज़मर्रा के जीवन की वस्तुओं से समझना कठिन है।
ऐसा ही एक अजीब क्वांटम गुण है, महास्थिति (Superposition)। किसी कण की स्थिति अज्ञात होने पर उसे महास्थिति (Superposition) मे माना जाता है। अर्थात वह कण उस समय पर एक साथ सभी स्थितियों मे होता है। श्रोडींगर की बिल्ली एक साथ जीवित और मृत अवस्था मे होती है।
निष्कर्ष
क्वांटम सिद्धांत ने मूलभूत कणो के व्यवहार और गुणधर्मो की व्याख्या सफलता से की है। लेकिन यह सिद्धांत गुरुत्वाकर्षण के नगण्य होने पर ही कार्य करता है। कण भौतिकी उसी समय कार्य करती है जब हम मानते है कि गुरुत्वाकर्षण का अस्तित्व नही है।
साधारण सापेक्षतावाद ने ब्रह्माण्ड के अनेको रहस्यों को उजागर किया है जिसमे ग्रहो की कक्षा, तारों, आकाशगंगाओं का जन्म और विकास, महाविस्फोट(The Big Bang), श्याम वीवर तथा गुरुत्विय लेंस का समावेश है। लेकिन यह सिद्धांत उस समय कार्य करता है जब हम मानते हैं कि प्रकृति के व्यवहार की व्याख्या के लिए क्वांटम भौतिकी की आवश्यकता नही है।
Share:

0 comments:

Post a Comment

Einstien Academy. Powered by Blogger.

Solve this

 Dear readers.  So you all know my current situation from beyond this dimension but for some reason your are reading this in this dimension ...

Contact Form

Name

Email *

Message *

Email Newsletter

Subscribe to our newsletter to get the latest updates to your inbox. ;-)


Your email address is safe with us!

Search This Blog

Blog Archive

Popular Posts

Blogroll

About

Email Newsletter

Subscribe to our newsletter to get the latest updates to your inbox. ;-)


Your email address is safe with us!

Blog Archive