pichle bhag मे हमने अस्थायी या अस्थिर परमाणु केन्द्रक से संबंधित कुछ प्रश्न देखे थे :

प्रोटान धनात्मक रूप से आवेशित होते हैं और विद्युत रूप में एक दूसरे के प्रतिकर्षित करते हैं। परमाणु केन्द्र ग्लुआन कणों के कारण बंधा रहता है अन्यथा वह बिखर जायेगा। इस प्रभाव को ही अवशिष्ट मजबूत नाभिकीय बल कहते हैं।
कण तरंग के जैसे व्यवहार करते हैं इसलिए इनकी स्थिति और संवेग दोनों को एक साथ नहीं जाना जा सकता है। एक समय मे संवेग या स्थिती दोनो मे से एक ही की गणना संभव है। इन कणों को बिंदु के जैसे गोले के रूप में सोचना आसान पड़ता है लेकिन यह वास्तविकता मे यह एक गलत छवि है। मूलभूत कणो एक धुंधले बादल के जैसे क्षेत्र के रूप में दर्शाया जाता है, इस क्षेत्र में इन कणों के होने की संभावना सबसे ज्यादा होती है।
यूरेनियम के एक टुकड़े को यदि ऐसे ही रख दिया जाये तो वह एक बार में एक परमाणु केन्द्र की दर से स्वाभाविक रूप से क्षय होने लगेगा। रेडियो सक्रिय पदार्थ के क्षय की दर उसके आधे अणुओं के क्षय होने में होने वाले समय से मापी जाती है। इसे अर्ध-आयु कहते हैं। किसी एकल परमाणु केन्द्रक के क्षय का अनुमान लगाना संभव नहीं है लेकिन हम किसी यूरेनियन के टुकड़े के क्षय का समय ज्ञात कर सकते हैं।
किसी परमाणु के केन्द्रक का कम द्रव्यमान के केंद्रक में टूटकर क्षय होता है, इस प्रक्रिया मे एकाधिक परमाणु केन्द्रक बनते है। परमाणु केन्द्रक प्रोटान तथा न्युट्रानो के समूह से बना होता है जिससे उसका टूटना संभव है। लेकिन किसी मूलभूत कण का अन्य मूलभूत कण में क्षय कैसे होता है ?
मजबूत नाभिकीय क्षय : cc(c तथा c बार)एक मेसान कण है। यह कण मजबूत नाभिकीय क्षय से दो ग्लुआन में परिवर्तित हो सकता है।
- भारी परमाणु केन्द्रक अस्थायी क्यों होता है?
- किसी परमाणु केन्द्रक का किसी प्रायिकता(Probability) के आधार पर क्षय क्यों होता है ?
- परमाणु केन्द्रक के क्षय मे द्रव्यमान का भी क्षय होता है, यह द्रव्यमान कहाँ जाता है ?
इस भाग मे हम इन प्रश्नों का उत्तर देने का प्रयास करेंगे।
परमाणु केन्द्र के अंदर एक नजर


अब आप परमाणु केन्द्रक को एक स्प्रिंग के जैसे समझे, इस स्प्रिंग में जो तनाव है वह विद्युत प्रतिकर्षण है। इस स्प्रिंग हो एक बड़ी रस्सी से दबाकर बांधा गया है जो कि अवशिष्ट मजबूत नाभिकीय बल है। स्प्रिंग में काफी सारी ऊर्जा है लेकिन वह ऊर्जा बाहर नहीं आ सकती क्योंकि रस्सी बहुत मजबूत है।
यदि आपने इस श्रृंखला के प्रारंभिक लेख नही पढ़े है, तो आगे बढ़ने से पहले उन्हे पढ़ें।
- मूलभूत क्या है ?
- ब्रह्माण्ड किससे निर्मित है – भाग 1?
- ब्रह्माण्ड किससे निर्मित है – भाग 2?
- ब्रह्माण्ड को कौन बांधे रखता है ?
- परमाणु को कौन बांधे रखता है?
- नाभिकिय बल और गुरुत्वाकर्षण
- क्वांटम यांत्रिकी
- कणों का क्षय और विनाश
यदि कोई घटना संभव है, वह होकर रहेगी।
परमाण्विक कण रोजाना की वस्तुओं की तरह व्यवहार नहीं करते हैं। हम यह नहीं कह सकते कि यह कण यह कार्य करेगा, हम कहते हैं कि यह कण यह कार्य कर सकता है। कणों रोजाना की वस्तुओं की तरह गति करते हैं और उनका भी संवेग होता है लेकिन वे तरंगों की तरह भी व्यवहार करते हैं। क्वांटम यांत्रिकी जो कि कणों से संबंधित सिद्धांतों का गणितीय मॉडल है, कणों के व्यवहार को प्रायिकता (संभावना) के रूप में व्यक्त करता है।

प्रोटान और न्यूट्रॉन परमाणु केन्द्र के अंदर घूमते रहते हैं। इस अवस्था में अत्यंत लघु संभावना होती है कि दो प्रोटान और दो न्यूट्रॉन का समूह (अल्फा कण) किसी क्षण परमाणु केन्द्र से बाहर चले जाये। यह संभावना नगण्य होती है लेकिन शून्य नही होती है। परमाणु केन्द्र जितना बड़ा होगा, यह संभावना उतनी ज्यादा होगी।
इस अवस्था में अल्फा कण उसे परमाणु केन्द्र में रोके रखने वाले अवशिष्ट मजबूत नाभिकीय बल से स्वतंत्र हो जायेगा। यह अचानक स्प्रिंग के अचानक रस्सी के बंधन से छूटने जैसा होगा, आवेशित अल्फा कण परमाणु केन्द्र से बाहर तेज गति से चला जायेगा।
क्वांटम यांत्रिकी में “हर संभव प्रक्रिया होकर रहती है”। यह क्वांटम भौतिकी का आधार है। कुछ परमाणु के लिये एक निश्चित संभावना रहती है कि उसका रेडियोसक्रिय क्षय होगा क्योंकि उसका परमाणु केन्द्र अत्यंत लघु समय के लिये बिखरने की अवस्था में हो सकता है। आप यह अनुमान नहीं लगा सकते कि किसी विशिष्ट परमाणु का क्षय होगा लेकिन आप किसी विशिष्ट अवधि में उसके क्षय होने की संभावना की गणना कर सकते हैं।
अर्ध -आयु (Half Life)

भौतिक गुणधर्मों का भी संभावना पर निर्भर रहना निराश करता है। इसी के उत्तर में आइंस्टाइन ने कहा था,
“भगवान पांसे नहीं खेलता!”
लेकिन वे गलत थे।
लापता द्रव्यमान (Missing Mass)
अभी लापता द्रव्यमान के प्रश्न का उत्तर देना शेष है। रेडियोसक्रिय पदार्थ के क्षय में गुम द्रव्यमान कहां जाता है ? यूरेनियम के थोरीयम तथा अल्फा कण में क्षय होने पर 0.0046 इकाई परमाणु द्रव्यमान नष्ट हो जाता है।
आइन्स्टाइन ने कहा था :
जब यूरेनियम केन्द्रक का क्षय होता है उसके द्रव्यमान का कुछ भाग गतिज ऊर्जा(गति करते कणों की ऊर्जा) में परिवर्तित हो जाता है। ऊर्जा के संरक्षण का नियम , द्रव्यमान में क्षति के रूप में दिखाती देता है।
कण क्षय के मध्यस्थ-कण (Particle Decay Mediators)

मूलभूत कण का विभाजन नहीं हो सकता क्योंकि उनके घटक नहीं होते हैं। लेकिन जब हम मूलभूत कण का क्षय कहते है, यह क्षय ना होकर किसी विशेष प्रक्रिया से मूलभूत कण का दूसरे मूलभूत कणों में परिवर्तन होता हैं।
किसी मूलभूत कण के क्षय होने पर वह कम द्रव्यमान वाले कण तथा एक बल वाहक कण में परिवर्तित होता है। इस क्षय में एक W बोसान बनता है। ये बल वाहक कण बाद में दूसरे कण के रूप में प्रकट हो सकते हैं। अर्थात एक कण दूसरे कण में सीधे सीधे परिवर्तित नहीं होता है; इसके मध्य एक मध्यवर्ती बल-वाहक कण होता है जो कण क्षय की मध्यस्थता करता है।
बहुधा यह अस्थायी बल-वाहक कण ऊर्जा के संरक्षण के नियम का उल्लंघन करते प्रतीत होते हैं क्योंकि उनका द्रव्यमान प्रक्रिया की कुल ऊर्जा से ज्यादा होता है। लेकिन इन कणों का अस्तित्व इतने कम समय के लिये होता है कि कोई नियम नहीं टूटता है। इन कणों को आभासी कण(virtual particles) कहते हैं।
आभासी कण (Virtual Particles)
कणों का क्षय बल वाहक कणों के मार्ग से होता है। लेकिन कभी कभी किसी कण के क्षय में मध्यस्थ बल वाहक-कण का द्रव्यमान मूल कण से भी ज्यादा होता है। यह मध्यस्थ कण तुरंत कम द्रव्यमान वाले कणों में परिवर्तित हो जाता है। यह अल्पायु वाला उच्च ज्यादा द्रव्यमान वाला बल-वाहक कण ऊर्जा और द्रव्यमान के संरक्षण ने नियम का उल्लंघन करता प्रतीत होता है लेकिन उनका द्रव्यमान अदृश्य से नहीं आ सकता है।
हिजेनबर्ग के अनिश्चितता के सिद्धांत (Uncertanity Priciple)के अनुसार इन ज्यादा द्रव्यमान वाले कणों की आयु अत्यधिक कम होती है। एक तरह से वे किसी के ध्यान देने से पहले ही नष्ट हो जाते हैं। इन्हें आभासी कण कहा जाता है।
आभासी कण ऊर्जा के संरक्षण के नियम का उल्लंघन नहीं करते हैं। मूल क्षय होते कण तथा अंतिम परिवर्तित कणों की द्रव्यमान और गतिज ऊर्जा समान होती है। आभासी कण इतने छोटे समय के लिए होते हैं कि उन्हें कभी देखा नहीं का सकता है।
अधिकतर कण प्रक्रियायें आभासी बल वाहक कणों द्वारा होती है। इसके उदाहरण में न्यूट्रॉन बीटा क्षय, चार्म कणों का निर्माण इटा-सी कणों का क्षय शामिल है। इन सभी उदाहरणों को हम विस्तार से देखेंगे।
भिन्न क्षय प्रतिक्रियायें
मजबूत नाभिकीय, विद्युत-चुंबकीय तथा कमजोर नाभिकीय प्रतिक्रियाओं में कणों का क्षय होता है। लेकिन केवल कमजोर नाभिकीय प्रतिक्रियाओं में मूलभूत कणों का क्षय होता है।
कमजोर नाभिकीय क्षय : केवल कमजोर नाभिकीय प्रतिक्रिया मूलभूत कण को दूसरे मूलभूत कण में परिवर्तित कर सकती है। भौतिक शास्त्री कणों के प्रकार को फ़्लेवर कहते हैं। कमजोर नाभिकीय बल चार्म क्वार्क को स्ट्रेंज क्वार्क में बदल सकता है, इस प्रक्रिया में आभासी कण W बोसान का उत्सर्जन होता है।(चार्म और स्ट्रेंज फ्लेवर है।) केवल कमजोर नाभिकीय प्रतिक्रिया ही फ्लेवर परिवर्तन कर सकती है और मूलभूत कणों का क्षय कर सकती है।
विद्युत–चुंबकीय क्षय: उदासीन π0 पीआन कण qq (q तथा q बार) मेसान कण होता है। क्वार्क और प्रतिक्वार्क एक दूसरे का विनाश कर सकते हैं, इस विनाश से दो फोटान बनते हैं। यह एक विद्युत-चुंबकीय क्षय का उदाहरण है।

मजबूत बल वाहक ग्लुआन कण रंग आवेश परिवर्तन वाले क्षय की मध्यस्थता करवाता है। कमजोर बलवाहक कण W+/W– फ्लेवर या आवेश परिवर्तन वाले क्षय कराते हैं।
0 comments:
Post a Comment