जब किसी धातु की सतह पर विद्युत चुम्बकीय विकरण(Electro Magnetic Radiation जैसे X-किरण,पराबैगनी किरण,दृश्य प्रकाश)पड़ती है तो उसकी सतह से इलेक्ट्रॉन निकलने लगते है सरल शब्दों में यही प्रकाश विद्युत है। इस क्रिया से जो इलेक्ट्रॉन निकलते है उसे प्रकाश इलेक्ट्रॉन(Photoelectron)कहते है। दृश्य प्रकाश का उपयोग केवल क्षारीय धातु पर ही यह प्रभाव दिखाता है जबकि X-किरण का जब उपयोग किया जाता है तो लगभग सभी धातुएँ प्रकाश विद्युत प्रभाव दिखाती है।
प्रकाश विद्युत प्रभाव की खोज महान जर्मन भौतिक विज्ञानी हेनरीच हर्ट्ज(Heinrich Hertz)ने 1887 मे की थी। हेनरीच ने ऋण प्लेट पर पराबैगनी किरणें डालने पर देखा की परिपथ मे तुरन्त ही विद्युत धारा प्रवाहित होने लगती है। पराबैगनी किरणे डालना बंद करते है तो धारा प्रवाह भी एकदम रुक जाता है। यदि इसको ऋण प्लेट के बजाय धन प्लेट पर डाला जाय तो परिपथ में या तो कोई धारा नही बहती अथवा बहुत ही क्षीण धारा बहती है। मगर हेनरीच अपने तमाम प्रयासों के बाद भी इस प्रकाश विद्युत प्रभाव की कोई संतोषजनक व्याख्या नही कर पाए। उनकी विफलता का बड़ा कारण था प्रकाश विद्युत प्रभाव को प्रकाश तरंग सिद्धान्त से समझाना। शास्त्रीय प्रकाश तरंग सिद्धान्त के अनुसार,प्रकाश की तीव्रता(प्रवलता Wavelength)ही निर्धारित करती है तरंग की विपुलता( आयाम)*। हर्ट्ज के अनुसार अति तीव्र प्रकाश की प्रवलता के कारण इलेक्ट्रॉन धातु के अंदर दोलन करते हुए और अधिक गतिज ऊर्जा(Kinetic energy)के साथ उत्सर्जित होने लगते है। परंतु जब उनके प्रयोग से उनकी कथन की तुलना की गयी तो उनका कथन संतोषजनक नही था। प्रयोग यह दर्शाता है कि उत्सर्जित इलेक्ट्रॉन की गतिज ऊर्जा प्रकाश के आवृति पर निर्भर करती है प्रकाश की तीव्रता का प्रभाव केवल निकलनेवाले इलेक्ट्रॉन की संख्या पर ही था न की इलेक्ट्रॉन की गतिज ऊर्जा पर। उनके इस सैद्धान्तिक टिप्पणी से उस समय प्रकाश विद्युत प्रभाव को समझना और समझाना काफी जटिल हो गया था। कारण कुछ भी हो हर्ट्ज इस प्रभाव के आविष्कारक थे इसलिए उनके सम्मान मे इस प्रकाश विद्युत प्रभाव को हर्ट्ज प्रभाव (Hertz effect) भी कहा जाता है।

प्रकाशविद्युत प्रभाव का अध्ययन करने के लिये प्रयोग। इसमें प्रकाश स्रोत एक पतली आवृत्ति बैण्ड वाला (लगभग एकवर्णी) लेते हैं। इस प्रकाश को कैथोड पर डालते हैं जो निर्वात में स्थित है। एनोड और कैथोड के बीच विभवान्तर से यह निर्धारित हो जाता है कि कैथोड से उत्सर्जित वे ही इलेक्ट्रान एनोड तक आ पायेंगे जिनके पास निकलते समय eV से अधिक गतिज ऊर्जा होगी। धारा की मात्रा (μA), प्राप्त इलेक्ट्रानों की संख्या के समानुपाती होगी।
कहते है,वो महान है जो जटिल यंत्र बनाये,जटिल सिद्धान्त दे परन्तु उससे भी ज्यादा महान वो है जो जटिल को सरल बना दे। प्रकाश विद्युत प्रभाव के साथ भी कुछ ऐसा ही हुआ। जर्मनी मे ही जन्मे इस सदी के महान भौतिकविज्ञानी अल्बर्ट आइंस्टीन(Albert Einstein :1905)ने प्रकाश विद्युत प्रभाव की सफल व्याख्या की। आइंस्टीन ने मैक्स प्लांक(Max Planck)द्वारा प्रतिपादित क्वांटम थ्योरी(Quantum theory)को आधार मानकर प्रकाश विद्युत प्रभाव की सटीक व्याख्या की। मैक्स प्लांक के अनुसार प्रकाश ऊर्जा छोटे-छोटे पैकटों के रूप में चलता है जिसे फोटोन या क्वांटम (Photon or Quantum) कहते है।
एक फोटॉन की ऊर्जा = hc/λ
जहाँ h = प्लांक नियतांक = 6.62607×10-34 जूल
c = प्रकाश का वेग = 3×108 m/s
λ = प्रकाश का तरंगदैर्ध्य
यदि प्रकाश की आवृति n हो तो v = c/λ
इसलिए एक फोटॉन की ऊर्जा E = hυ
यहाँ [E = energy] [h = plank constant] [υ = frequency]
किसी धातु पृष्ठ से इलेक्ट्रॉन को मात्र बाहर निकलने मे जितनी ऊर्जा व्यय होती है उसे धातु का कार्य फलन(Work function)कहा जाता है इसे Φo से व्यक्त किया जाता है। अलग अलग धातुओ के लिए Φo का मान भी भिन्न-भिन्न होता है। यदि hυ ऊर्जा के फोटॉन द्वारा उत्सर्जित प्रकाश इलेक्ट्रॉन का महत्तम वेग यदि Vmax हो, तो ऊर्जा संरक्षण नियमानुसार,
[hυ = Φo+1/2mv²max]
या,[1/2mv²max = hυ-Φo]
यहाँ m इलेक्ट्रॉन का द्रव्यमान है। इस समीकरण को आइन्सटीन का प्रकाश विद्युत समीकरण कहा जाता है। इससे स्पस्ट है सतह से निकलने वाले इलेक्ट्रॉनों की गतिज ऊर्जा महत्तम होती है। प्रकाश विद्युतधारा आपतित विकिरण की तीव्रता पर निर्भर करता है जबकि उत्सर्जित इलेक्ट्रॉनों की गतिज ऊर्जा फोटॉन की आवृत्ति पर निर्भर करती है।
किसी भी धातु के लिए क्रांतिक आवृति (Threshold frequency) वह न्यूमतम आवृति है जिसके नीचे की आवृत्ति वाले प्रकाश द्वारा प्रकाश विद्युत प्रभाव उत्तपन्न नही किया जा सकता चाहे प्रकाश की तीव्रता कितनी भी बड़ी क्यों न हो।
किसी भी धातु के लिए क्रांतिक आवृति (Threshold frequency) वह न्यूमतम आवृति है जिसके नीचे की आवृत्ति वाले प्रकाश द्वारा प्रकाश विद्युत प्रभाव उत्तपन्न नही किया जा सकता चाहे प्रकाश की तीव्रता कितनी भी बड़ी क्यों न हो।
यदि f० =Threshold frequency हो तो
Φo = hf०
अब प्रकाश विद्युत प्रभाव को इस प्रकार लिखा जाता है
[hf = hf० + 1/2mv²max]
- धातु की सतह से प्रकाशपुंज टकराते ही इलेक्ट्रॉन उत्सर्जित होने लगते है अर्थात प्रकाश पड़ने और इलेक्ट्रॉन निकलने के बीच कोई समय अंतराल नही होता।
- उत्सर्जित इलेक्ट्रॉन की संख्या प्रकाश की तीव्रता के समानुपाती होता है।
- क्रांतिक आवृति से नीचे की आवृत्ति का प्रकाश यह प्रभाव उत्तपन्न नही कर सकता।
- जैसे जैसे प्रकाश की आवृत्ति को बढ़ाते है वैसे वैसे उत्सर्जित इलेक्ट्रॉन की गतिज ऊर्जा बढ़ती जाती है।
- उत्तपन्न प्रकाश विद्युतधारा प्रकाश विकरण की तीव्रता पर निर्भर करता है।
इस सिद्धान्त का महत्व इससे बड़ा हो जाता है क्योंकि यह सिद्धान्त प्रकाश के तरंग प्रकृति के विरुद्ध उसके कणीय प्रकृति का समर्थन करता है। इस सफल व्याख्या के लिए उन्हें 1921 मे नोबेल पुरस्कार (Nobel Prize) से सम्मानित किया गया। आज इस सिद्धान्त का उपयोग फोटो सेल,टेलीविज़न,कैमरा ट्यूब और सोलर सेल मे किया जाता है।
0 comments:
Post a Comment